Name:		
Class:	-	

TRIAL HIGHER SCHOOL CERTIFICATE EXAMINATION 2019 MATHEMATICS

General Instructions:

- · Reading Time: 5 minutes.
- · Working Time: 3 hours.
- Write in black pen.
- · Board approved calculators & templates may be used
- · A Reference Sheet is provided.
- In Question 11 16, show all relevant mathematical reasoning and/or calculations.
- Marks may not be awarded for careless or badly arranged working.

Total Marks 100

Section I:

10 marks

- · Attempt Question 1 10.
- Answer on the Multiple Choice answer sheet provided.
- · Allow about 15 minutes for this section.

Section II:

90 Marks

- Attempt Question 11 16
- Answer on lined paper provided. Start a new sheet for each new question.
- · Allow about 2 hours & 45 minutes for this section.

The answers to all questions are to be returned in separate *stapled* bundles clearly labelled Question 11, Question 12, etc. Each question must show your Candidate Number.

Attempt Question 1-10 (1 mark each) Allow approximately 15 minutes for this section.

- **1.** The graph of $y = e^{-x}$ is:
- A. Monotonically increasing

- B. Monotonically decreasing
- C. Neither monotonically increasing nor . monotonically decreasing
- D. Cannot be determined
- **2.** What is the 6th term of the series 10 15 + 22.5 33.75 ...
- A. -75.9375
- B. 75.9375
- C. -113.90625
- D. 113.90625

- **3.** Evaluate $\int_{-2}^{2} 4x^3 4x \, dx$:
- A. 0

B. 8

C. 16

D. 24

- 4. $\frac{3+\sqrt{2}}{3-\sqrt{2}}$ 5 is equivalent to:
- A. $\frac{-21(2+\sqrt{2})}{7}$ B. $\frac{2(23+3\sqrt{2})}{7}$
- C. $\frac{6(5\sqrt{2}-8)}{7}$
- D. $\frac{6(\sqrt{2}-4)}{7}$

- **5.** The axis of symmetry for the parabola $y = -x^2 + 8x + 3$ is:
- A. y axis
- C. x = 2
- D. x = 4

- 6. John has 10 marbles in a bag, 3 of which are green and the rest are yellow. He randomly draws 1 out of the bag, notes its colour and then puts it back before drawing another out of the bag. What is the probability that both marbles drawn are the same colour?
- A. 0.42

- B. 0.58
- C. 0.7

- D. 3
- 7. The parabola with vertex $(-\frac{3}{2},0)$, focal length $\frac{1}{2}$, and exists only on the negative side of the y-axis is given by:
- A. $y^2 = 2(x + \frac{3}{2})$

B. $y^2 = -2(x + \frac{3}{2})$

C. $x^2 = 2(y + \frac{3}{2})$

- D. $x^2 = -2(y + \frac{3}{2})$
- **8.** The quadrilateral formed by (1, 2), (3, 3), (1, 7), (-1, 3) is: (Give the most specific answer)
- A. Parallelogram

B. Rhombus

C. Square

- D. Kite
- **9.** For what values of m will the geometric series $1 + 2m^2 + 4m^4 + \cdots$ have a limiting sum?
- A. $m < \frac{1}{2}$

- B. $-\frac{1}{2} < m < \frac{1}{2}$ C. $-\frac{1}{4} < m < \frac{1}{4}$ D. $-\frac{1}{\sqrt{2}} < m < \frac{1}{\sqrt{7}}$
- **10.** Suppose that the point P(a, f(a)) lies on the curve y = f(x). If f'(a) = 0 and f''(a) > 0, which of the following statements describes the point P on the graph of y = f(x)?
- A. P is a maximum turning point

B. P is a horizontal point of inflexion

C. P is a minimum turning point

D. P is a point of inflexion

Section II Total Marks is 90

Attempt Questions 11 - 16.

Allow approximately 2 hours & 45 minutes for this section.

Answer all questions, starting each new question on a new sheet of paper with your student ID number in the top right hand corner and the question number on the left hand side of your paper.

All necessary working must be shown in each and every question.

Question 11 (15 marks)

a) Find the derivative of:

i.
$$(x^2 + 9x - 3)^3$$

ii.
$$\frac{x}{x^2+1}$$
 (Simplify your answer)

iii.
$$x^2\sqrt{x+1}$$
 (Simplify your answer fully over one denominator) 2

b) If
$$f(x) = \sqrt{x}$$
, show that $f'(x) = \frac{1}{2\sqrt{x}}$ using first principles.

c) A remote-controlled toy car travels in a straight line from an origin according to the equation x = (t-7)(t-2) where x is in metres and t is in seconds.

ii. Find the velocity of the car in terms of
$$t$$
.

1

iv. The car unfortunately will malfunction if it reaches a speed of exactly
$$5 ms^{-1}$$
, when will this happen first?

d) Let α and β be the roots of the quadratic equation $2x^2 + 4x - 9 = 0$. Find value of:

i.
$$\alpha + \beta$$

iii.
$$\alpha^3 + \beta^3$$

Question 12 (15 marks) Start a new sheet of paper

a)

The diagram shows points A(1,0) and B(4,1) and C(-1,6) in the Cartesian plane. $\angle ABC = \theta$ and D is where CB cuts the x-axis.

Copy or trace this diagram into your answer sheet.

- i. Show that the line AC is given by 3x + y 3 = 0.
- ii. Hence, find the angle AC makes with the positive x-axis to the nearest degree. 1

2

2

2

2

2

- iii. Show that of $AB \perp AC$.
- iv. Find the length of AB and AC.
- v. Hence, by considering the right angle $\triangle ABC$, find the value of θ to the nearest degree.
- vi. Find the coordinates of E, the midpoint of AC.
- vii. Find the area of $\triangle CEB$.
- viii. Suppose F lies on BC such that $EF \mid\mid AB$. Prove that $\triangle CEF \mid\mid\mid \triangle CAB$.
- ix. Hence, find the length of EF. Give reasons.

Question 13 (15 marks) Start a new sheet of paper

a) Find
$$\frac{d}{dx}(\sin^2 x)$$

b) Solve
$$\sqrt{3}\sin^2\theta = \sin\theta\cos\theta$$
 for $0 \le \theta \le 2\pi$ (Give your answer in radians)

c) Solve
$$\log_2 x + \log_2 (x - 3) = 2$$

- d) In a group of 10 birds, 5 are red and 5 are green. If three birds are selected at random, Find the probability that:
 - i. They are all red
 - ii. At least one is green
- e) A coin is tossed continually, until for the first time successive tosses give the same result. Find the probability that the experiment finishes before the 4th throw.
- f) The sum to n^{th} term of a series is given by $S_n = 3n^2 2n + 1$.
 - i. Use the formula $T_n = S_n S_{n-1}$ to show that the n^{th} term of the series is given by $T_n = 6n 5$
 - ii. It can be shown that the sum of this series is actually given by $S_n = C + T_1 + T_2 + \cdots + T_n$ where C is a constant (DO NOT PROVE THIS FORMULA). Find the value of C.

Question 14 (15 marks) Start a new sheet of paper

a)

The shaded region in the diagram is bounded by the circle of radius 2 centred at the origin, the parabola $y = x^2 - 3x + 2$, and the x-axis.

Find the area of the shaded region.

3

b) Use Simpsons Rule with 5 function values to approximate $\int_0^{\pi} x \sin x \, dx$ correct to 2 decimal places.

3

c)

The triangle ABC has a right angle at B, $\angle BAC = \theta$ and AB = 6. The line BD is drawn perpendicular to AC. The line DE is then drawn perpendicular to BC. This process continues indefinitely as shown in the diagram. You may assume other angles are also θ without proof.

i. Find the length of the interval BD, and hence show that the length of the interval EF is $6 \sin^3 \theta$.

2

ii. Show that the limiting sum $BD + EF + GH + \cdots$ is given by $6sec\theta tan\theta$

3

- d) A restaurant offers choices of 3 vegetarian options, 3 meat options and 2 carb options. I wish to select 2 different dishes.
- 2

i. Draw a grid diagram (or dot diagram) to illustrate the sample space

- 1
- iii. Amy wishes to also order 2 different dishes at random. Find the probability that we will have ordered exactly the same dishes.

Hence or otherwise, find the probability that both my dishes belong to the same category.

1

ii.

Question 15 (15 marks) Start a new sheet of paper

a)

In the isosceles triangle ABC, $\angle ABC = \angle ACB = \alpha$. The points D and E lie on BC and AC respectively, so that AD = AE, as shown in the diagram. Let $\angle BAD = \beta$.

Copy the diagram onto your answer sheet.

- i. Find $\angle DAC$ in terms of α and β . Give reasons.
- ii. Hence or otherwise, find $\angle EDC$ in terms of β . Give reasons.

1

1

2

1

b) The flow rate of water first into and then out of a tank is given by

$$R = 3\pi t (12 - t)$$
 litres/second.

- i. When does the water stop flowing into the tank?
- ii. The tank was initially empty. Show that the volume of water in the tank is given by

$$V = \pi t^2 (18 - t)$$

iii. Find the rate at which the water is flowing out of the tank when the tank is empty again.

c)

The regions A, B and C are enclosed by the curve y = f'(x), the x-axis, the y-axis, and the line y = 7. The area of region A is $10u^2$, while the area of regions B and C are both $5u^2$.

i. Given that f(0) = 12, find f(7).

2

2

ii. Let $g(x) = (f(x))^2$. Given that f'(7) = 6, find the equation of the tangent to the graph y = g(x) at x = 7.

d)

The shaded region in the diagram is bounded by the curve $y = 1 + 2\sqrt{x}$, the y-axis and the horizontal interval BP. The x-coordinate of P is 4.

Calculate the exact volume of the solid of revolution formed when the shaded region is rotated about the y-axis.

3

PLEASE TURN OVER

Question 16 (15 marks) Start a new sheet of paper

a)

The diagram shows a hollow cylindrical tube of length l cm and radius r cm. P is a point on the circumference at one edge of the tube, at the very bottom of the rim of the tube. Q is a point on the opposite side of the tube, three-quarters of the way up the tube. RP is the diameter with R directly below Q. The length of PQ is d cm.

- i. Show that the volume of the tube is given by $V = \frac{\pi l}{4} (d^2 \frac{9l^2}{16})$
- ii. If d remains constant, find l in terms of d that will give the maximum volume for the tube. 3
- b) A certain insect plague is following the law of natural growth. The insect population P satisfies the equation $P = P_0 e^{kt}$. Time t is measured in months and P_0 and k are constants.

Initially there were 10 000 insects in the plague and after 8 months there were 40 000.

i. Show that
$$P_0 = 10\,000$$
 and $k = \frac{1}{4}\ln 2$

- ii. After how many whole months would the population exceed 1 million?
- c) \$30 000 is borrowed at 9 % per annum reducible interest, calculated monthly. The loan is repaid in equal monthly instalments of \$M over 5 years. Interest is charged before repayments are made every month.

Let A_n be the amount owing after n monthly repayments.

i. Show that
$$A_n = 30\,000 \times R^n - M(\frac{R^{n-1}}{R-1})$$
 where $R = \frac{403}{400}$

- ii. Show that the monthly repayment is \$622.75
- iii. What is the balance owing after the 24th payment?

End of Paper

MATHEMATICS: Question		3
Suggested Solutions	Marks	Marker's Comments
$(x^{3} + 9x - 3)$ $(y) = (x^{3} + 9x - 3) \cdot (3x + 9)$ (i)		
$y = \frac{x}{x^2 + 1}$		oimplify your
$y' = \frac{x^2 + 1 \cdot 1 - x(2x)}{(x^3 + 1)^2}$		
$\frac{1-\kappa^2}{\left(\kappa^3+1\right)^2}$		
iii. $y = \chi^2 \sqrt{\kappa + 1}$ $y' = (\chi + 1)^{1/2}, 2\chi + \chi^2, \frac{1}{2}(\chi + 1)^{-1/3}$	- (1)	
$= \frac{2 \cdot 2x(x+1) + x}{2(\sqrt{x+1})}$ $= \frac{4x^{2} + 4x + x^{2}}{2(\sqrt{x+1})} = \frac{5x^{2} + 4x}{2(\sqrt{x+1})}$	-(1	
$y = x^{2}(x+i)^{\frac{1}{2}}$ $y = (x^{5} + x^{4})^{\frac{1}{2}}$ $y' = \frac{1}{2}(x^{5} + x^{4})^{-\frac{1}{2}} \times 5x^{4} + 4x^{3}$		
$=\frac{\chi^{2}(5\chi^{2}+4\chi)}{\chi^{2}(2+1)^{1/2}}$ $=\frac{5\chi^{2}+4\chi}{2(\sqrt{\chi+1})}$ (1)		

MATHEMATICS: Question		2/3
Suggested Solutions	Marks	Marker's Comments
b) $f(x) = \sqrt{x}$ using $ st $ principles $f'(x) = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h}$ $= \lim_{h \to 0} \frac{\sqrt{x+h} - \sqrt{x}}{h} \times \frac{\sqrt{x+h} + \sqrt{x}}{\sqrt{x+h} + \sqrt{x}}$ $= \lim_{h \to 0} \frac{\sqrt{x+h} - \sqrt{x}}{h} = \lim_{h \to 0} \frac{1}{\sqrt{x+h}}$ $= \lim_{h \to 0} \frac{\sqrt{x+h} + \sqrt{x}}{\sqrt{x+h} + \sqrt{x}}$ $= \frac{1}{\sqrt{x+h}}$ $= \frac{1}{\sqrt{x+h}}$	$\frac{1}{h+\sqrt{x}}$	-(I) -(I)
c) i) $x = \frac{2}{3}$ when $t = 5$ $x = (-2)(3)$ $= -6m$ from origin ii) $x = t^2 - 9t + 14$ $v = 2t - 9$ $t = 4.55$ iv) $t = 5$ $t = 4.55$ iv) $t = 5$ $t = 7$ $t = 7$ $t = 7$ $t = 2$ $t = 2$ $t = 25$	/ }	

MATHEMATICS: Question		3/3
Suggested Solutions	Marks	Marker's Comments
i) $2x^{2}+4x-9=0$ i) $x+\beta=-\frac{4}{2}=-2$ ii) $x/\beta=-\frac{9}{2}$ iii) $x/\beta=-\frac{9}{2}$		

MATHEMATICS: Question Suggested Solutions	Marks	Marker's Comments
(1)6) F (0,3)0 B (4,1)		Draw a diagram at least of page in size.
A(1,0)		
i) $M_{AC} = \frac{-3}{1}$ 4 y intercept = 3. i' eqn of AC! $y = -3x + 3$ 3x + y - 3 = 0		(2)
ii) $tan \propto = -\frac{3}{1}$ ii) $tan \propto = 108^{\circ}$. $tan \propto = 108^{\circ}$.		
ii) $_{M}AB = \frac{1-0}{4-1}$ $_{M}AC = -\frac{3}{1}$ $= \frac{1}{3}$ $_{AB} \circ M_{AC} = \frac{1}{3} \times -\frac{3}{1}$ = -1 $_{C} \circ AB \perp AC$.	1	2

MATHEMATICS: Question		
Suggested Solutions	Marks	Marker's Comments
(IV) $d_{AB} = \sqrt{(4-1)^2 + (1-0)^2}$ = $\sqrt{9+1}$		
= 110	ļ	
$d_{AC} = \sqrt{(0-6)^2 + (1+1)^2}$ $= \sqrt{36+4}$		(2)
$= \sqrt{40}$ $= 2\sqrt{10}$		
(V) $In \triangle ABC$ $tan \Theta = AC$ AB		
$= 2\sqrt{10}$ $\sqrt{10}$ $\theta = 63^{\circ}$		
(vi) $E = \left(\frac{1+-1}{2}, \frac{0+6}{2}\right)$ E = (0,3)		
(vii) Area $\triangle CEB = \frac{1}{2} \times EC \times AB$ = $\frac{1}{2} \times \sqrt{(-1-0)^2 + (6-3)^2} \times$		
$=\frac{1}{2}\times\sqrt{10}\times\sqrt{10}$		2
Note! You could also use	1	
A= 1× EC×EB×Sin (BEC.		

 $[\]verb|``Teacher`Faculties`Maths` marking templates \verb|`Suggested Mk solns template_V2_no Ls.doc| \\$

MATHEMATICS: Question _ = - +			
	Suggested Solutions	Marks	Marker's Comments
(viii)	In DCEF and DCAB \(C \) is common \(CEF = LCAB \) (corresponding a in EF II AB \(\) \(\) \(ACEF \) III \(\) \(CAB \) (equiangular). \(\)	(5)	finding equal angles angles identifying to a giving reason for similarity.
(ix)	$\frac{EF}{AB} = \frac{CE}{CA}$ (corresponding sides of similar triangles are in proportion (or matrix). $\frac{EF}{\sqrt{10}} = \frac{\sqrt{10}}{2\sqrt{10}}$		for similarity.
	$EF = \frac{10}{2\sqrt{10}}$ $= \frac{\sqrt{10}}{2}$	1	
(A)	Iternatively, you could use CE = \(\frac{1}{2} \) AC (a line drawn from o \) side of a triangle to another, parallel to the 3rd side, division the other 2 sides in same of	,	

 $[\]verb|`Areacher'| Faculties | Maths | marking templates | Suggested Mk solns template | V2_no Ls. doc$

·	
Marks	Marker's Comments
\	accepted both onswers
3	question says answer in radians
	factorising I wark for Solving Jasino - coso = 0 I wark for final 5 considers
/	0.52359 and 13.665182
3	I mark for Simplifying logarithmic Law
	factorising correctly
	braccepting 4 only
	Marks

MATHEMATICS: Question <u>\gamma_3</u> Suggested Solutions	Marks	Marker's Comments
d) 10 birds $< 5 \text{ red} < 5 \text{ green}$. i) $p(\text{all red}) = 5 \times 4 \times 3 = \frac{1}{12}$	1	- Getting 1/2
ii) $p(at least = 1 - p(all red)$ one is green) $= \frac{1}{12}$	1) Getting 11/2
e) Find probability that expt finishes before the 4th row	2	
Method 1 $p(HH) = \frac{1}{4}$ $p(TT) = \frac{1}{4} \text{add} 1 - p(\text{not finishes})$ $P(HTT) = \frac{1}{8} 3 1 - \left(\frac{1}{8} + \frac{1}{8}\right)$ $P(THH) = \frac{1}{8}$		I mark for correct working of Probabilities I mark for
Method 3 P(even) = P ₂ + P ₃ probability Probability for second + for throw 3 "Afthrow = 1 + 1 + 1 + + 1 + + 1		getting the answer 3.
$=\frac{3}{4}$ $f)(i) 5(n) = 3n^2 - 2n + 1 and use T_n = S_n - S_n$		
$S(n-1) = 3(n-1)^{2} + 2(n-1) + 1$ $= 3(n^{2} - 2n + 1) - 2(n-1) + 1$ $= 3n^{2} - 6n + 3 - 2n + 2 + 1$	2	Friding Sunal
= 3n2-8n+6 : Sn - Sn-1 gives		/ nauk for 4x-kl Tn = Sn - Sn=1

MATHEMATICS: Question 13		Page 3
Suggested Solutions	Marks	Marker's Comments
(ii) $S_n = C + T_1 + T_2 + \dots T_n$. Show it is an AP.		1 mark
$T_1 = 1$ $T_2 = 7$ $T_3 = 13$ $T_4 = 19$		an NP
Method 1 Sq = 3(22) -2(2)+1 Sn = $\frac{n}{2}$ [2a+(n-1)d] From formula Sz = $\frac{n}{2}$ [2+(n-1)6] = $\frac{n}{2}$ [5 h - 4] = $\frac{n}{2}$ [6n - 4] = $\frac{n}{2}$ [6n - 4] Compare with $\frac{n}{2}$ = $\frac{n}{2}$ - 2n + 1		working
$3n^{2}-2n+c=3m^{2}-2n+1$ $1.c=1$		· getting value of c.

		, , , , , , , , , , , , , , , , , , ,
MATHEMATICS: Question 1/4 Suggested Solutions	Marks	$y = x^2 - 3x + 2$
a) Avea of the shaded Region.	3	-2 0 1 2 7
A = Area of first quadrant of a circle $ \int (x^2-3x+2) dx $. I mark for finding area of quater of Circle as T
$= \frac{\pi(2^{2})}{4} - \left[\frac{x^{3}}{3} - \frac{3x^{2}}{2} + 2x\right]_{0}^{2}$ $= \pi - \left(\frac{1}{3} - \frac{3}{2} + 2\right)$		and integrating
= TT - 56 Area 15 TT - 5% unit		. Correct working to get answer T-51
b), Simpson's rule with 5 function values, $\frac{x}{2} = \frac{\pi}{12} \left[\frac{\pi}{2} + \frac{3\pi}{4} \right] = \frac{\pi}{2} \left[\frac{\pi}{4} + \frac{3\pi}{4} \right] + 2 \left(\frac{\pi}{2} \right)$ $\frac{\pi}{12} \left[\frac{\pi}{12} \left[(0 + 0) + 4 \left(\frac{\pi}{4\sqrt{2}} + \frac{3\pi}{4\sqrt{2}} \right) + 2 \left(\frac{\pi}{2} \right) \right]$	3	get in (1=3)
$= \frac{17}{12} \left[\frac{4\pi}{\sqrt{2}} + \frac{17}{1} \right]$ $= \frac{17}{12} \left[\frac{4\pi}{\sqrt{2}} + \frac{17}{\sqrt{2}} \right]$		Use of formula.
$= \frac{\pi^{2}}{12\sqrt{2}} (4+\sqrt{2})$ $= \pi^{2} (2\sqrt{2}+1)$ $= 3.15$		nanipolations to get 3.15

MATHEMATICS: Question 11		Page 2
Suggested Solutions	Marks	Marker's Comments
c) Find the length of BD and show internal EF 15 65in &	2,	
i) sind = BD		
BD = 6 SINO		> Show BDis
LEBD = & also		6 Sina
Sino = DE = DE BD 65ino		
to DE = 6 Sin O.		
LFD6 = C		Working
Sino = EF = EF		to get to
		651m30
: EF = 651m3 0		
ii) show that the limiting sum	3	
BD+EF +GH + is given by		
6 Sec 8 tan 6		
Sevies is 6 sind + 6 sind + 6 sind +	>	1 mark to
a = 6500		getting the
r = 5120'		series and
Sum = a		values of a and
1		· I mark for
= 65:00		Corvect
1-51-0		formuta
		and substitution
6 Sint		
		Charles Aug
= 6 smax1		Showing trig
toso los o		identities'
- 6 tand Seco		and leading
		to 6tan8 Sec Q
		Note is students
		65200 = 6 tanes

MATHEMATICS: Question 4		- page 3 -
Suggested Solutions	Marks	Marker's Comments
d). (1) 3 VC-, 3 mest and 2 carb.	2.	T \ C \
M, M, M, V, V, C, C,		To get Sull
M. 1/2/ 0 0		had to show
M2 0 1/4 0		MM, M2M2 mete
M ₃ 0 0 71/		does not exist
V, 1/1/1/10 0		
V. 071/10		
V ₃ 00 741,		
C. 141 0		
C2 0 741		
56 possible outcome		
(ii) P (same category) ie P(VV) = 6/56	1	
p(um) = 6/s p(LC) = 2/s	4	
: p (some category is 14 = 1	6	-> I more
56 4		
(iii) kny wishes to order 2 different of at random. Find		
p (budered exactly the same alsh		
ways of picking V. Vz and Vz V, is	2	
$\frac{2}{56} = \frac{1}{28}$) 1 morte

MATHEMATICS: Question		1/3
Suggested Solutions	Marks	Marker's Comments
a) i) A LOAC + /51+d +d = 180 (angk sum LDAC = 180 - 2x -/6 ii) LADC = α +/6 (exterior angle e) LDAC+ LAED + LADE = 180 (angle s (LADE = LAED (equal angles q 180 - 2x -/6 + 2 ADE = 180 JADE = 180 - 180 + 2x +/6 LADE = α +/6	c A im o	ABD) ABD) ABD) te equal sides) I mark for LED remaining 2 " for LADC, LAD
i) $R = 3\pi t (12 - t)$ i) stop flowing when $R = 0$ i. $t = 0$ or 12 $t > 0$ but t is $12s$ only ii') $Tank \ empty$. $\int R = 36\pi t - 3\pi t^{2}$ $V = 18\pi t^{2} - \pi t^{3} + C$	- (1) - (1)	

MATHEMATICS: Question		2/3
Suggested Solutions	Marks	Marker's Comments
when $t=0$, $V=0$ $0 = 18\pi(0)^2 - \pi(6)^3 + C$ (1) to $C=0$. C=0.	· luc	to value of C
iii) when $V=0$ t=0 or 18 . when $t=18$. $R=36\pi(18)(12-18)$ $=-324\pi L/8$	to to	b value of R and must e units.
c) $A = \int_{0}^{3} f'(x)$ given $f(0)=12$ $f(x) = \int_{0}^{3} f'(x)$ $f(x) = \int_{0}^{3} f'(x) = \int_{0}^{3$	she	an understand f(7)

MATHEMATICS: Quest	tion	3/3
Suggested Solutions	Marks Awarded	Marker's Comments
ii) $g(x) = (f(x))^2$, $f'(7) = 6$, $f(x) = 6$, $f(x)$	7)=2 — =7	- cfe from(i)
$g(x) = (f(x))^2$		
$g'(x) = 2 f(x) \cdot f'(x)$ when $x = 7$		
when $x = 7$ $= 24$ when $x = 7$ $y = (f(7))^2$ (cfe)	!/	t was lue
Eqn of tangent. ie it	has to be	squared from (i) student could
y = 24x - 164	2 morks	for this part
d) $y = 1 + 2 \sqrt{x}$ rotate abt y $\therefore 2 \sqrt{x} = y - 1$		x=4 atpt B
$x = \left(\frac{y-1}{2}\right)^2 = \left(\frac{y-1}{4}\right)^2$ $0.5\left((y-1)^2\right)^2$		y=1+254 =5.
V J, (-4)	has IT, an	degn squared.
$= \frac{\pi}{16} \int_{1}^{5} \frac{(y-1)^{4}}{5} \int_{1}^{5} = \frac{\pi}{16x5} \left(\frac{4^{5}-0^{5}}{5} \right)$		reduce from
$=\frac{64\pi}{5}u^3$	_ correct substitu	value from

MATHEMATICS: Question 16		ge l
Suggested Solutions	Marks	Marker's Comments
$\frac{3}{4}$ d $\frac{1}{6}$		
(1) $V = \pi r^2 L$ In $\triangle RPQ$ $(2r)^2 + (\frac{3}{4}l)^2 = d^2$ (by f.	ythago Theor	ras') em)
(1) $V = \pi r^2 L$ In $\triangle RPQ$ $(2r)^2 + (\frac{3}{4}l)^2 = d^2$ (by f) $4r^2 + \frac{9}{16}l^2 = d^2$ $4r^2 = d^2 - \frac{9}{16}l^2$	1	
$r = Q - \frac{1}{4x/h}$		(2)
$V = \pi r^{2} L$ $= \pi \left(\frac{d^{2} - 9 - l^{2}}{4 \times lb} \right) L$ $= \pi L \left(\frac{d^{2} - 9 - l^{2}}{4 \times lb} \right)$	-	-given answer
4		
(ii) maximum volume occurs when $\frac{dV}{dl} = 0$		
$V = \frac{\pi}{4}Ld^2 - \frac{9\pi L^3}{4x1b}$ $dV = \frac{\pi}{4}d^2 - \frac{3\pi L^3}{4x1b}$		
$\frac{dV}{dl} = \frac{\pi d^2}{4} - \frac{27\pi l^2}{64}$	1	

MATHEMATICS: Question		
Suggested Solutions	Marks	Marker's Comments
(b) P=Poekt Initially t=0 P=10000 Ok 10000 = Poek		
10000 = 10		and to
1. P=10000e Subst t=8 4 P=40000 to find k.		needed to . this.
Subst $t = 8 \text{ at } P = 40000 \text{ to find } k$. 40000 = 100000 e $e^{8k} = 40000$		
$e^{8k} = \frac{40000}{10000}$ $e^{8k} = 4$ $e^{8k} = 4$ $e^{8k} = 4$		(2)
$109e4 = 8k$ $k = \frac{loge4}{8}$ $k = \frac{ln4}{8}$	1	
$k = \frac{\ln 2}{8}$ $k = 2 \ln 2$ $k = 2 \ln 2$ $k = \frac{\ln 2}{4}$		
$k = \frac{2 \ln L}{8}$ $k = \frac{Ln^2}{8}$		
4		

	16	page 4
Suggested Solutions	Marks	Marker's Comments
i) Population exceeds Imillion when ln2t > 1000000	1	
ie e ln² t > 100		
loge e 2 > loge 100		(2)
$l_{\frac{1}{4}}$, $t > log_{e} 100$ $l_{1} 2t > 4 ln 100$		
$t > \frac{4 \ln 100}{\ln 2}$		
t > 26.6.	1	
i. Popn exceeds 100000 after 27 mths (nearest month).		
(c) $P = 30000$ $9\%pa = \frac{9}{12,100}$ 5 years = 60 months. $= \frac{3}{400}$		
Let $R = 1 + \frac{3}{400} = \frac{403}{400}$ Amount owing after Imonth		
$A_1 = 30000 \times R - M$ $A_2 = (30000 \times R - M)R - M$ $= 30000 R^2 - MR - M$	ı	

MATHEMATICS: Question	16 page	25
Suggested Solutions	Marks	Marker's Comments
$A_3 = (30000 R^2 - MR - M) R - M$ $= 30000 R^3 - MR^2 - MR - M$ $= 30000 R^3 - M(R^2 + R + 1)$		
$A_{n} = 30000 R^{n} - M(R^{n-1} + R^{n-2} + + R^{2} + R^{n-1})$ $= 30000 R^{n} - M(1 + R + R^{2} + + R^{n-1})$	(+1) 1	
this is a GP where $a=1$, $r=R$ $S_n = q \frac{(R^n-1)}{R-1}$	2	(3)
$=\frac{R^{n-1}}{R-1}$		11:6 answer is
$\frac{1}{4} A_{n} = 30000 R^{n} - M(R^{n} - 1)$ $= 30000 \times R^{n} - M(R^{n} - 1) \text{ where } R = \frac{4}{4}$ $= 30000 \times R^{n} - M(R^{n} - 1) \text{ where } R = \frac{4}{4}$	03	this answer is
(ii) Loan is paid off when $A_n = 0$ is $A_$		
$= 30000 \left(\frac{403}{400}\right)^{60} \left(\frac{3}{400}\right)^{60} \left(\frac{3}{400}\right)^{60}$		
(111) Balance GWING after 214th payment $A_{24} = 30000 R^{24} - 622.75 (R^{24} - 1)$ $= 35892.40588 - 622.75 \times 26.188$ $= 19583.54	1	
$A_{24} = 36000 \text{ K}$ $= 36892.40588 - 622.75 \times 26.188$ $= 19583.54	47	